LETTERS 2004 Vol. 6, No. 4 593–595

ORGANIC

Triethylborane-Induced Radical Allylation Reaction with Zirconocene–Olefin Complex

Koji Hirano, Kazuya Fujita, Hiroshi Shinokubo, and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura Nishikyo-ku, Kyoto 615-8510, Japan

oshima@fm1.kuic.kyoto-u.ac.jp

Received December 14, 2003

ABSTRACT

Allylzirconium reagents are effective for radical allylation of α -halo carbonyl compounds. The key steps would be homolytic cleavage of the zirconium–carbon bond and halogen abstraction by the resulting Cp₂ZrCl(III). Zirconocene–olefin complex can be also utilized for the allylation of α -halo compounds.

A radical allylation reaction is synthetically useful because the introduced allyl group serves as a versatile precursor for further functionalization.¹ Recent advances in the radical allylation reaction have mainly benefited from the efficiency of allylstannanes as mediators.² The use of tin-based reagents is, however, not always convenient because of the inherent toxicity of organotin derivatives and the difficulty often encountered in removing tin residues from the product.³ To solve the problems associated with organotin reagents, several alternative approaches have been utilized with some success.^{4–6} However, the efficacy of these alternatives often proved to be inferior to that of allylstannanes. Here we wish to introduce allylzirconium as an allylating reagent via a radical process.⁷

The reagent, allylzirconium, was prepared from Cp₂ZrCl₂ and allylmagnesium chlorides [Method A].⁸ Treatment of Cp₂ZrCl₂ (3.0 mmol) with allylmagnesium chloride (3.0 mmol) in THF at -78 °C provided allylzirconium 1.⁹ Benzyl iodoacetate **2a** (1.0 mmol) and Et₃B (0.2 mmol) as a radical initiator were sequentially added, and the mixture was warmed to 25 °C and stirred for 3 h.¹⁰ After aqueous workup,

(9) Use of 1.5 equiv of allylzirconium provided **3a** in only 34% yield along with the recovered α -iodo ester.

(10) (a) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. **1987**, 109, 2547. (b) Oshima, K.; Utimoto, K. J. Synth. Org. Chem. Jpn. **1989**, 47, 40.

^{(1) (}a) Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001. (b) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. **1991**, *91*, 1237.

^{(2) (}a) Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. *Tetrahedron* **1985**, *41*, 4079. (b) Curran, D. P. *Synthesis* **1998**, 417 and 489.

⁽³⁾ Bagley, P. A.; Walton, J. C. Angew. Chem., Int. Ed. 1998, 37, 3072.
(4) Silicon-based radical chain carriers such as allyl tris(trimethylsilyl)silane are effective alternatives to tin reagents, although these compounds are often costly. (a) Chatgilialoglu, C.; Ballestri, M.; Vecchi, D.; Curran, D. P. Tetrahedron Lett. 1996, 37, 6383. (b) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. Tetrahedron Lett. 1996, 37, 6387. (c) Guindon, Y.; Guerin, B.; Chabot, C.; Oglivie, W. J. Am. Chem. Soc. 1996, 118, 12528.
(d) Porter, N. A.; Wu, J. H.; Zhang, G.; Reed, A. D. J. Org. Chem. 1997, 62, 6702.

^{(5) (}a) Quiclet-Sire, B.; Zard, S. Z. J. Am. Chem. Soc. 1996, 118, 1209.
(b) Guyader, F. L.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Z. J. Am. Chem. Soc. 1997, 119, 7410. (c) Sire, B.; Seguin, S.; Zard, S. Z. Angew. Chem., Int. Ed. 1998, 37, 2864.

⁽⁶⁾ Usugi, S.; Yorimitsu, H.; Oshima, K. Tetrahedron Lett. 2001, 42, 4535.

⁽⁷⁾ Recently, we have reported the Cp₂Zr(H)Cl-mediated radical reduction reaction involving homolytic cleavage of the zirconium—hydrogen bond: (a) Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. *J. Am. Chem. Soc.* **2001**, *123*, 3137. (b) Fujita, K.; Yorimitsu, H.; Oshima, K. *Synlett* **2002**, 337.

⁽⁸⁾ It is known that Cp₂ZrCl₂ reacts with 2-butenylmagnesium chloride to provide a mixture of Cp₂ZrCl(2-butenyl) and Cp₂Zr(2-butenyl)₂. (a) Mashima, K.; Yasuda, H.; Asami, K.; Nakamura, A. *Chem. Lett.* **1983**, 219. We confirmed that Cp₂Zr(2-butenyl)₂, generated by mixing Cp₂ZrCl₂ and 2-butenylmagnesium chloride in a 1:2 ratio, was also effective for the radical allylation. The reactivity of Cp₂Zr(2-butenyl)₂ toward α -halo carbonyl compounds was similar to that of Cp₂ZrCl₂-butenyl).

silica gel column purification afforded **3a** in 93% yield (Scheme 1). The representative reactions of various halides with **1** are listed in Table 1. Most of the allylation reactions of α -iodo carbonyl compounds proceeded smoothly to provide the corresponding desired products in satisfactory yields (runs 1–7). It is worth noting that α -bromo esters, usually unreactive for radical allylation reaction, were also efficiently allylated, although an equimolar amount of Et₃B was necessary (runs 8–11).¹¹

Table 1.	Allvlation	Reaction	with A	Ilylzirconiun	n Reagent ^a

run	substrate	Х	Y	R	product	yield
1	2a	Ι	OCH ₂ Ph	Н	3a	93%
2	2b	Ι	OCH ₂ Ph	CH_3	3b	77%
3	2 c	Ι	$-O(CH_2)_3-$		3c	90 %
4	2d	Ι	O(CH ₂) ₆ Cl	Н	3d	77%
5	2e	Ι	$O(CH_2)_4CH=CH_2$	Н	3e	81%
6	2f	Ι	NEt ₂	Н	3f	96%
7	2g	Ι	N(H)CH ₂ Ph	Н	3g	82%
8 ^b	2h	Br	OCH ₂ Ph	Н	3h	68 %
9 ^b	2i	Br	OEt	ⁿ C ₆ H ₁₃	3i	88%
10^{b}	2j	Br	$-O(CH_2)_3-$		3j	90%
11^{b}	2k	Br	NEt ₂	Н	3k	96%

 a Cp₂ZrCl₂ (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), α -iodo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 0.2 mmol), -78 °C, 5 h. b Cp₂ZrCl₂ (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), α -bromo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 1.0 mmol), -78 °C, 5 h.

In the absence of Et₃B, only a trace amount of allylation products was observed. Furthermore, the addition of a radical scavenger, 2,2,6,6-tetramethylpiperidine-*N*-oxyl, suppressed the reaction and yielded only a trace amount of desired product **3**. On the basis of these findings, we propose a radical mechanism for this new allylation reaction (Scheme 2). An ethyl radical, generated from Et₃B by the action of a trace amount of oxygen, abstracts iodide homolytically from α -iodo ester to afford the carbon-centered radical **4**. The radical **4** adds to allylzirconium **1** to provide **5**, which collapses to the allylation product **3a** and liberates a zirconium(III) species **6**. The latter then abstracts iodide from α -iodo ester, regenerating the alkyl radical **4**.

Encouraged by these results, we next investigated an intermolecular three-component coupling reaction of allylzir-

coniums, alkyl halides, and alkenes. A sequential addition of cyclohexyl iodide (5.0 mmol), *tert*-butyl acrylate (1.0 mmol), and Et_3B (0.2 mmol) to a solution of allylzirconium (1, 3.0 mmol) in THF afforded the coupling product **7a** in 84% yield (Scheme 3). In this case, a cyclohexyl radical adds

to the terminal carbon of acrylate yielding radical intermediate **8**. The coupling product **7** is formed by the radical allylation of **8** with **1**. The use of isopropyl iodide in place of cyclohexyl iodide also furnished the corresponding adduct **7b** in good yield (Table 2). Alkyl bromide also underwent three-component coupling reaction upon treatment of allylzirconium **1**.

 Table 2.
 Intermolecular Three-Component Coupling Reaction^a

		1 1	8
run	R	product	yield
1	C ₆ H ₁₁ I	7a	84%
2	ⁱ PrI	7b	70%
3^{b}	C6H11Br	7a	29%
4^{b}	^{<i>i</i>} PrBr	7b	50%

 a Cp₂ZrCl₂ (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), alkyl halide (5.0 mmol), *tert*-butyl acrylate (1.0 mmol), Et₃B (1.0 M hexane solution, 0.2 mmol), -78 °C, 5 h. b Cp₂ZrCl₂ (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), alkyl halide (5.0 mmol), *tert*-butyl acrylate (1.0 mmol), Et₃B (1.0 M hexane solution, 1.0 mmol), -78 °C, 5 h.

Recently, we have reported that zirconocene-olefin complex can be utilized for allylation of carbonyl compounds.¹² This result encouraged us to try the present radical

⁽¹¹⁾ With a catalytic amount (0.20 equiv) of Et_3B , most of the α -bromo ester was recovered along with a trace of the allylation product.

allylation process using this reagent [Method B] (Scheme 4). A zirconocene–1-propene complex, derived from Cp₂-ZrCl₂ (3.0 mmol) and propylmagnesium bromide (6.0 mmol), reacts with disopropyl ketone (4.5 mmol) to afford **11**. The addition of benzyl iodoacetate **2a** (1.0 mmol) in the presence of Et₃B (0.2 mmol) provided the desired adduct **3a** in excellent yield. The reactions with other α -carbonyl compounds are summarized in Table 3. This protocol is also

Table 3. Allylation Reaction with Zirconium–OlefinComplex a

run	2	Х	Y	R	R′	3	yield
1	2a	Ι	OCH ₂ Ph	Н	Н	3a	93%
2	2b	Ι	OCH ₂ Ph	CH_3	Н	3b	55%
3^{b}	2i	Br	OEt	ⁿ C ₆ H ₁₃	Н	3i	72%
4^{b}	21	Br	$O^{-n}C_{7}H_{15}$	CH_3	CH_3	31	78 %
5^b	2m	Cl	OCH ₂ Ph	CH_3	Η	3m	56%

^{*a*} Cp₂ZrCl₂ (3.0 mmol), Grignard reagent (1.0 M THF solution, 6.0 mmol), diisopropyl ketone (4.5 mmol), α-iodo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 0.2 mmol), -78 °C, 5 h. ^{*b*} Cp₂ZrCl₂ (3.0 mmol), Grignard reagent (1.0 M THF solution, 6.0 mmol), diisopropyl ketone (4.5 mmol), α-halo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 1.0 mmol), -78 °C, 5 h.

general and can be applied to a broad range of α -halo carbonyl compounds. It is worth noting that α -chloro carbonyl compounds and tertiary bromides can be allylated in good yields.¹³

Moreover, the reaction also works for various allylic zirconiums. Treatment of crotylzirconium 14, derived from

Cp₂ZrCl₂, butylmagnesium bromide, and diisopropyl ketone with benzyl iodoacetate **2a** afforded benzyl 3-methyl-4pentenoate **15a** in 99% yield with high regioselectivity (Scheme 5). The regioisomer, benzyl 4-hexenoate **16**, was not detected in the reaction mixture. This reaction is particularly useful because radical-trapping with crotylstannanes has generally resulted in failure.¹⁴ In contrast, the crotylzirconium reagent afforded the desired products satisfactorily in terms of both yields and selectivities. α -Iodo amide also yielded the corresponding γ -adduct exclusively in excellent yields.

In conclusion, we have found that allylzirconium species could be utilized for a radical allylation process as an excellent alternative to allyltributyltin. The key steps would be homolytic cleavage of the zirconium–carbon bond and halogen abstraction by $Cp_2ZrCl(III)$. The present protocol circumvents the drawback of organotin compounds and provides us with a useful synthetic method for the construction of carbon skeletons via a radical process.

Acknowledgment. This work was supported by Grantsin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan. K.F. acknowledges JSPS for financial support.

Supporting Information Available: Experimental procedures and compound data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL036431E

^{(12) (}a) Fujita, K.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 12115. (b) Fujita, K.; Shinokubo, H.; Oshima, K. Angew. Chem., Int. Ed. 2003, 42, 2550. (c) Fujita, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. Submitted for publication.

⁽¹³⁾ In general, the radical allylation of tertiary bromides provides the desired products in poor yields due to the steric effect.

⁽¹⁴⁾ Failure of reaction with crotylstannane can be attributed to the reduced reactivity of crotylstannane and the isomerization to more reactive 3-buten-2-ylstannane. (a) Clive, D. L. J.; Psul, C. C.; Wang, Z. J. Org. Chem. **1997**, *62*, 7028. Sibi has developed selective crotylation of α -carbonyl radicals at low temperatures with a Lewis acid catalyst. (b) Sibi, M. P.; Chen, J. J. Am. Chem. Soc. **2001**, *123*, 9427. (c) Sibi, M. P.; Miyabe, H. Org. Lett. **2002**, *4*, 3435.