ORGANIC

Triethylborane-Induced Radical Allylation Reaction with Zirconocene−**Olefin Complex**

Koji Hirano, Kazuya Fujita, Hiroshi Shinokubo, and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, *Kyoto-daigaku Katsura Nishikyo-ku, Kyoto 615-8510, Japan*

oshima@fm1.kuic.kyoto-u.ac.jp

Received December 14, 2003

ABSTRACT

Allylzirconium reagents are effective for radical allylation of r**-halo carbonyl compounds. The key steps would be homolytic cleavage of the zirconium**−**carbon bond and halogen abstraction by the resulting Cp2ZrCl(III). Zirconocene**−**olefin complex can be also utilized for the allylation of** α-halo compounds.

A radical allylation reaction is synthetically useful because the introduced allyl group serves as a versatile precursor for further functionalization.¹ Recent advances in the radical allylation reaction have mainly benefited from the efficiency of allylstannanes as mediators.2 The use of tin-based reagents is, however, not always convenient because of the inherent toxicity of organotin derivatives and the difficulty often encountered in removing tin residues from the product.³ To solve the problems associated with organotin reagents, several alternative approaches have been utilized with some success.⁴⁻⁶ However, the efficacy of these alternatives often

proved to be inferior to that of allylstannanes. Here we wish to introduce allylzirconium as an allylating reagent via a radical process.7

The reagent, allylzirconium, was prepared from Cp_2ZrCl_2 and allylmagnesium chlorides [Method A].8 Treatment of Cp_2ZrCl_2 (3.0 mmol) with allylmagnesium chloride (3.0 mmol) in THF at -78 °C provided allylzirconium 1.9 Benzyl
iodoacetate $22(1.0 \text{ mmol})$ and $\text{Et-}B(0.2 \text{ mmol})$ as a radical iodoacetate **2a** (1.0 mmol) and Et₃B (0.2 mmol) as a radical initiator were sequentially added, and the mixture was warmed to 25 °C and stirred for 3 h.¹⁰ After aqueous workup,

(9) Use of 1.5 equiv of allylzirconium provided **3a** in only 34% yield along with the recovered α -iodo ester.

(10) (a) Nozaki, K.; Oshima, K.; Utimoto, K. *J. Am. Chem. Soc*. **1987**, *109*, 2547. (b) Oshima, K.; Utimoto, K. *J. Synth. Org. Chem. Jpn.* **1989**, *47*, 40.

^{(1) (}a) *Radicals in Organic Synthesis*; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001. (b) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. *Chem. Re*V. **¹⁹⁹¹**, *⁹¹*, 1237.

^{(2) (}a) Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. *Tetrahedron* **1985**, *41*, 4079. (b) Curran, D. P. *Synthesis* **1998**, 417 and 489.

⁽³⁾ Bagley, P. A.; Walton, J. C. *Angew. Chem., Int. Ed*. **1998**, *37*, 3072. (4) Silicon-based radical chain carriers such as allyl tris(trimethylsilyl) silane are effective alternatives to tin reagents, although these compounds are often costly. (a) Chatgilialoglu, C.; Ballestri, M.; Vecchi, D.; Curran, D. P. *Tetrahedron Lett*. **1996**, *37*, 6383. (b) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. *Tetrahedron Lett*. **1996**, *37*, 6387. (c) Guindon, Y.; Guerin, B.; Chabot, C.; Oglivie, W. *J. Am. Chem. Soc*. **1996**, *118*, 12528. (d) Porter, N. A.; Wu, J. H.; Zhang, G.; Reed, A. D. *J. Org. Chem.* **1997**, *62*, 6702.

^{(5) (}a) Quiclet-Sire, B.; Zard, S. Z. *J. Am. Chem. Soc.* **1996**, *118*, 1209. (b) Guyader, F. L.; Quiclet-Sire, B.; Seguin, S.; Zard, S. Z. *J. Am. Chem. Soc.* **1997**, *119*, 7410. (c) Sire, B.; Seguin, S.; Zard, S. Z. *Angew. Chem., Int. Ed*. **1998**, *37*, 2864.

⁽⁶⁾ Usugi, S.; Yorimitsu, H.; Oshima, K. *Tetrahedron Lett.* **2001**, *42*, 4535.

⁽⁷⁾ Recently, we have reported the $Cp_2Zr(H)Cl$ -mediated radical reduction reaction involving homolytic cleavage of the zirconium-hydrogen bond: (a) Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. *J. Am. Chem. Soc.* **2001**, *123*, 3137. (b) Fujita, K.; Yorimitsu, H.; Oshima, K. *Synlett* **2002**, 337.

⁽⁸⁾ It is known that Cp_2ZrCl_2 reacts with 2-butenylmagnesium chloride to provide a mixture of $Cp_2ZrCl(2-butenyl)$ and $\dot{C}p_2Zr(2-butenyl)$. (a) Mashima, K.; Yasuda, H.; Asami, K.; Nakamura, A. *Chem. Lett*. **1983**, 219. We confirmed that $Cp_2Zr(2-butenyl)_2$, generated by mixing Cp_2ZrCl_2 and 2-butenylmagnesium chloride in a 1:2 ratio, was also effective for the radical allylation. The reactivity of Cp₂Zr(2-butenyl)₂ toward α -halo carbonyl compounds was similar to that of $Cp_2ZrCl(2-butenyl)$.

silica gel column purification afforded **3a** in 93% yield (Scheme 1). The representative reactions of various halides with **1** are listed in Table 1. Most of the allylation reactions of α -iodo carbonyl compounds proceeded smoothly to provide the corresponding desired products in satisfactory yields (runs 1-7). It is worth noting that α -bromo esters, usually unreactive for radical allylation reaction, were also efficiently allylated, although an equimolar amount of $E_{13}B$ was necessary (runs $8-11$).¹¹

run	substrate	X	Y	R	product	yield
$\mathbf{1}$	2a	T	OCH ₂ Ph	H	3a	93%
2	2 _b	I	OCH ₂ Ph	CH ₃	3b	77%
3	2с	I	$-O(CH2)3$		3c	90%
4	2d	I	O(CH ₂) ₆ Cl	Н	3d	77%
5	2e	I	$O(CH2)4CH=CH2$	Н	3e	81%
6	2f	I	NEt ₂	Н	3f	96%
7	2g	T	$N(H)CH_2Ph$	Н	3g	82%
8 ^b	2h	Вr	OCH ₂ Ph	н	3h	68%
9 _b	2i	Br	OEt	${}^nC_6H_{13}$	3i	88%
10^b	2j	Вr	$-O(CH2)3$		3j	90%
11 ^b	2k	Br	NEt ₂	н	3k	96%

^a Cp₂ZrCl₂ (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), α -iodo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 0.2 mmol), -78 °C, 5 h. ^b Cp₂ZrCl₂ (3.0 mmol), allylmagnesium solution, 0.2 mmol), $-78 \degree C$, 5 h. $\frac{b}{c}$ Cp₂ZrCl₂ (3.0 mmol), allylmagnesium
chlorides (1.0 M THE solution, 3.0 mmol), α -bromo carbonyl compound chlorides (1.0 M THF solution, 3.0 mmol), α -bromo carbonyl compound
(1.0 mmol), Et₂B (1.0 M hexane solution, 1.0 mmol), -78 °C, 5 h (1.0 mmol), Et₃B (1.0 M hexane solution, 1.0 mmol), $-78\text{ °C}, 5 \text{ h}$.

In the absence of Et_3B , only a trace amount of allylation products was observed. Furthermore, the addition of a radical scavenger, 2,2,6,6-tetramethylpiperidine-*N*-oxyl, suppressed the reaction and yielded only a trace amount of desired product **3**. On the basis of these findings, we propose a radical mechanism for this new allylation reaction (Scheme 2). An ethyl radical, generated from $Et₃B$ by the action of a trace amount of oxygen, abstracts iodide homolytically from α -iodo ester to afford the carbon-centered radical 4. The radical **4** adds to allylzirconium **1** to provide **5**, which collapses to the allylation product **3a** and liberates a zirconium(III) species **6**. The latter then abstracts iodide from α -iodo ester, regenerating the alkyl radical 4.

Encouraged by these results, we next investigated an intermolecular three-component coupling reaction of allylzir-

coniums, alkyl halides, and alkenes. A sequential addition of cyclohexyl iodide (5.0 mmol), *tert*-butyl acrylate (1.0 mmol), and $Et₃B$ (0.2 mmol) to a solution of allylzirconium (**1**, 3.0 mmol) in THF afforded the coupling product **7a** in 84% yield (Scheme 3). In this case, a cyclohexyl radical adds

to the terminal carbon of acrylate yielding radical intermediate **8**. The coupling product **7** is formed by the radical allylation of **8** with **1**. The use of isopropyl iodide in place of cyclohexyl iodide also furnished the corresponding adduct **7b** in good yield (Table 2). Alkyl bromide also underwent three-component coupling reaction upon treatment of allylzirconium **1**.

Table 2. Intermolecular Three-Component Coupling Reaction*^a*

run	R	product	yield
	${}^cC_6H_{11}I$	7а	84%
2	PrI	7b	70%
3 ^b	${}^cC_6H_{11}Br$	7а	29%
4 ^b	PrBr	7b	50%

^a Cp2ZrCl2 (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), alkyl halide (5.0 mmol), *tert*-butyl acrylate (1.0 mmol), Et₃B (1.0 M hexane solution, 0.2 mmol), -78 °C, 5 h. b Cp₂ZrCl₂ (3.0 mmol), allylmagnesium chlorides (1.0 M THF solution, 3.0 mmol), alkyl halide (5.0 mmol), *tert*-butyl acrylate (1.0 mmol), Et3B (1.0 M hexane solution, 1.0 mmol), -78 °C, 5 h.

Recently, we have reported that zirconocene-olefin complex can be utilized for allylation of carbonyl com-(11) With a catalytic amount (0.20 equiv) of Et₃B, most of the α -bromo

pounds.¹² This result encouraged us to try the present radical pounds.¹² This result encouraged us to try the present radical

ester was recovered along with a trace of the allylation product.

allylation process using this reagent [Method B] (Scheme 4). A zirconocene-1-propene complex, derived from Cp_2 - $ZrCl₂$ (3.0 mmol) and propylmagnesium bromide (6.0 mmol), reacts with diisopropyl ketone (4.5 mmol) to afford **11**. The addition of benzyl iodoacetate **2a** (1.0 mmol) in the presence of Et3B (0.2 mmol) provided the desired adduct **3a** in excellent yield. The reactions with other α -carbonyl compounds are summarized in Table 3. This protocol is also

Table 3. Allylation Reaction with Zirconium-Olefin Complex*^a*

run	2	X		R	\mathbf{R}'	3	yield
	2a		OCH ₂ Ph	н	H	3a	93%
2	2b		OCH ₂ Ph	CH ₃	H	3b	55%
3 ^b	2i	Вr	OEt	${}^nC_6H_{13}$	H	3i	72%
4 ^b	21	Вr	$O - {}^nC_7H_{15}$	CH ₃	CH ₃	31	78%
5 ^b	2m		OCH ₂ Ph	CH ₃	н	3m	56%

^a Cp2ZrCl2 (3.0 mmol), Grignard reagent (1.0 M THF solution, 6.0 mmol), diisopropyl ketone (4.5 mmol), α -iodo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 0.2 mmol), -78 °C, 5 h. *b* Cp₂ZrCl₂ (3.0 mmol), Grignard reagent (1.0 M THF solution, 6.0 mmol), diisopropyl ketone (4.5 mmol), α -halo carbonyl compound (1.0 mmol), Et₃B (1.0 M hexane solution, 1.0 mmol), -78 °C, 5 h.

general and can be applied to a broad range of α -halo carbonyl compounds. It is worth noting that α -chloro carbonyl compounds and tertiary bromides can be allylated in good yields.13

Moreover, the reaction also works for various allylic zirconiums. Treatment of crotylzirconium **14**, derived from

Cp₂ZrCl₂, butylmagnesium bromide, and diisopropyl ketone with benzyl iodoacetate **2a** afforded benzyl 3-methyl-4 pentenoate **15a** in 99% yield with high regioselectivity (Scheme 5). The regioisomer, benzyl 4-hexenoate **16**, was not detected in the reaction mixture. This reaction is particularly useful because radical-trapping with crotylstannanes has generally resulted in failure.14 In contrast, the crotylzirconium reagent afforded the desired products satisfactorily in terms of both yields and selectivities. α -Iodo amide also yielded the corresponding *γ*-adduct exclusively in excellent yields.

In conclusion, we have found that allylzirconium species could be utilized for a radical allylation process as an excellent alternative to allyltributyltin. The key steps would be homolytic cleavage of the zirconium-carbon bond and halogen abstraction by $Cp_2ZrCl(III)$. The present protocol circumvents the drawback of organotin compounds and provides us with a useful synthetic method for the construction of carbon skeletons via a radical process.

Acknowledgment. This work was supported by Grantsin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan. K.F. acknowledges JSPS for financial support.

Supporting Information Available: Experimental procedures and compound data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL036431E

^{(12) (}a) Fujita, K.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. *J. Am. Chem. Soc*. **2001**, *123*, 12115. (b) Fujita, K.; Shinokubo, H.; Oshima, K. *Angew. Chem., Int. Ed.* **2003**, 42, 2550. (c) Fujita, K.; Shinokubo, H.; Oshima, K. *J*. *Org. Chem*. Submitted for publication.

⁽¹³⁾ In general, the radical allylation of tertiary bromides provides the desired products in poor yields due to the steric effect.

⁽¹⁴⁾ Failure of reaction with crotylstannane can be attributed to the reduced reactivity of crotylstannane and the isomerization to more reactive 3-buten-2-ylstannane. (a) Clive, D. L. J.; Psul, C. C.; Wang, Z. *J. Org. Chem.* **1997**, 62 , 7028 . Sibi has developed selective crotylation of α -carbonyl radicals at low temperatures with a Lewis acid catalyst. (b) Sibi, M. P.; Chen, J. *J. Am. Chem. Soc*. **2001**, *123*, 9427. (c) Sibi, M. P.; Miyabe, H. *Org. Lett*. **2002**, *4*, 3435.